PRESENTER'S GUIDE

"COMPRESSED GAS CYLINDERS"

Part of the General Safety Series

Quality Safety and Health Products, for Today... and Tomorrow

OUTLINE OF MAJOR PROGRAM POINTS

OUTLINE OF MAJOR PROGRAM POINTS

The following outline summarizes the major points of information presented in the program. The outline can be used to review the program before conducting a classroom session, as well as in preparing to lead a class discussion about the program.

- These days it's hard to find a facility that doesn't use compressed gases in some way.
 - They are used as part of welding systems, in manufacturing, maintenance, refrigeration, medical procedures and even lab experiments.
- The cylinders that contain these gases make their distribution, storage and utilization practical and economical.
- A lot can be squeezed inside a compressed gas cylinder, but it takes a lot of force to do it. For example:
 - The compressed oxygen in a typical cylinder puts about twenty-two hundred pounds, or a little more than one ton, of pressure on every square inch of its container's walls.
 - That kind of pressure can be dangerous.
- The gases contained in the cylinders can present hazards of their own.
- To take the right precautions with a compressed gas cylinder, you need to know what's inside it.
 - Guessing about it is a recipe for disaster.
 - Hooking a cylinder full of the wrong gas into a system could be the last mistake you ever make.
- The color of a compressed gas cylinder won't tell you anything about its contents.
 - Cylinder colors are not standardized.
 - They're chosen by the companies that own the cylinders.
 - Each owner may have a different "color-coding" system.

- It's the labels on the cylinders that really tell you what's inside. They will provide you with:
 - The name of the gas.
 - The hazards you should watch out for.
 - How to handle the gas safely.
- Never remove, deface or change a cylinder's identifying labels.
 - That could create big problems for the next person who uses it.
- The characteristics of different gases require different methods of storing them in a cylinder.
 - Most gases are stored in one of four ways.
- The first method is called "standard compression".
 - This is when substances such as hydrogen and helium are "squeezed" into the cylinder in the form of a gas.
- The second way to store a gas is as a liquid.
 - This works well for gases such as carbon dioxide and propane that liquefy under ordinary temperatures and at pressures between 25 and 2,500 pounds-persquare-inch.
- The third storage method is to dissolve the gas in a solvent before putting it into a cylinder.
 - Acetylene is the only common gas that's stored this way, because it's unstable in its pure form and must be dissolved to be stored safely.
- In the fourth method, gases are condensed by "supercooling" so they can be stored as "cryogenic liquids" in special, insulated cylinders.
 - This is used for substances such as nitrogen, methane and sometimes oxygen... that have boiling points hundreds of degrees below zero, and would evaporate under normal temperatures.

- It's important to remember that these cryogenic cylinders' low temperatures can require special safety measures when they are handled.
 - Personal protective equipment such as goggles, a face shield and insulated gloves need to be worn to avoid burns and even frostbite.
 - Cryogenic containers should be handled gently, because their super-cooled steel is more likely to shatter than a normal cylinder's.
 - Leaks are more likely with cryogenic cylinders, too, because valve washers on the containers can become brittle, break and allow gas to escape.
- Don't forget that non-cryogenic compressed gas cylinders require careful handling as well!
- Compressed gas cylinders have two general types of hazards:
 - Those created by the high pressures that are exerted on the cylinders themselves.
 - Those that are associated with the specific gases they contain.
- Because the gas inside is highly pressurized, damaging a cylinder valve can be very dangerous.
 - If the valve opens unexpectedly, or breaks off completely, the rapid release of gas can make the container take off like a rocket.
 - Ricocheting around at a very high speed, it can do extensive damage to property and injure people.
- If for any reason the metal "body" of a cylinder fails, it can also explode with deadly force and scatter fragments just like a bursting artillery shell.
- This brings us to the particular hazards of the gas inside the cylinder.

- Imagine a cylinder that's set up in a lab, on a plant floor, or in the basement of an apartment building.
 - A faulty connection begins to leak.
 - The pressure continuously pushes the gas into the atmosphere, where it disperses throughout the space.
- If the gas in the cylinder is flammable, like hydrogen or methane, all it has to do is find a source of ignition, such as a spark or flame, and it will burn or even possibly explode.
- If the gas is in an oxidizer, such as oxygen or chlorine, while it won't burn itself it can "help" a fire start more easily and burn more fiercely once it's underway.
- If the leaking gas is a corrosive like ammonia, or toxic like carbon monoxide, it can cause physical injury or poison anyone who is exposed to it.
- All of these gases can be very hazardous, even in low concentrations, and are often invisible and/or odorless as well.
 - Any gas other than oxygen or plain air that leaks from a cylinder can push breathable air out of a space, so that the people inside will suffocate.
- Remember too, that any gas is more hazardous when it's stored as a cryogenic liquid, because cryogenics give off such large quantities of gas when they vaporize.
 - Bigger volumes of gas can cause bigger problems.

- Compressed gas cylinders may spend considerable time in storage before they're used, so it's important to know how to store them safely.
 - Cylinders should be stored in a cool, dry, wellventilated space.
 - Smoking should never be allowed in a cylinder storage area.
 - They should be stored in an upright position and secured with straps or chains to prevent them from falling or bumping against each other (draping a chain loosely around a cylinder is not an adequate safeguard!).
- Cylinders should also be kept out of direct sunlight, which could overheat them and cause the gas inside to try to expand, with nowhere to safely go.
 - Cylinders should also always be stored with their safety caps in place.
- More detailed information on safe storage practices for specific types of gases can be found on their cylinder's label, or on the material's SDS.
- Special precautions are required to safely store cylinders that contain flammable gases and oxidizers
 - To reduce the risk of fire they must be kept away from live electrical equipment, open flames or any other potential sources of ignition.
 - Flammable gases should also be separated from oxidizers, either by a wall or a distance of at least 20 feet.
- Compressed gas cylinders make it simpler to work with gases, but the cylinders themselves need to be handled with care.
- First, whenever you move a cylinder, even over a short distance, make sure its "safety cap" is on.
 - This cap protects the cylinder's valve in the event of a bump or fall.
 - It should always be in place when a cylinder is being transported... and whenever it's not being used as well.

- Never drag a cylinder across the floor.
 - This can damage the walls of the cylinder, especially at the base.
 - If the base becomes uneven, the cylinder will be unstable when it's set upright.
- An unstable cylinder is more likely to fall, and cause damage to its valve or other cylinders nearby.
 - It can also cause leaks in any gas lines it's connected to.
- Don't "hand roll" cylinders for anything more than a few feet, either.
 - They're hard to control when you do this, and dropping a cylinder is very dangerous.
- But if a compressed gas cylinder starts to fall, don't try to catch it!
 - More people are injured by trying to catch heavy, falling cylinders than by any other compressed gas hazard.
 - Always wear safety shoes with steel toes when you're handling cylinders.
 - That way if one does fall, your toes will at least stay intact!
- The safest way to move compressed gas cylinders is with a "cylinder hand truck".
 - These have curved braces that cradle a cylinder, and chains or straps to secure it in place.
- When moving cylinders between floors, use service elevators or dumbwaiters.
 - But riding along with a cylinder in an elevator is not a good idea.
 - Until the door opens at your destination, you're stuck in a very small space, and a leaking cylinder can quickly foul the air inside.
 - So walk up the stairs to meet the cylinder when it arrives, or have someone else positioned there to receive it.

- Once you get a cylinder to its destination, you need to secure it safely in place.
 - Just as when they're in storage, the goal here is to prevent cylinders from falling over or knocking against one another.
 - Physical stresses like that can lead to gas leaks, and much worse.
- Each location where cylinders are used should be equipped with some type of fastening system, such as brackets, racks or stands, to keep them upright and stable.
- For maximum stability, cylinders should be secured at at least two points.
 - Straps or chains are usually used for this.
 - Straps are preferable, since chains tend to be looser, and don't always do a good job of keeping a cylinder in place.
 - If you must use a chain, make sure it's as tight as possible.
- Requirements for securing compressed gas cylinders can vary from state to state.
 - Ask your supervisor about the specific laws and regulations that apply to you.
- Once a gas cylinder has been put in place, it's safe to unscrew the cap.
 - You should never force a cap off with a screwdriver or pry-bar.
 - That could accidentally open the valve, or damage it.
- There are two valve components that are critical for a safe hookup.
 - The <u>first</u> is a regulator, which controls how fast the gas can flow out of a cylinder.
 - This device reduces the "delivery pressure" to a level that's safe and practical for the user at the other end.

- The second component is a CGA fitting ("CGA" for short), which connects the regulator to the cylinder.
 - In most cases the CGA is attached to the regulator permanently.
- The purpose of a CGA is to make sure that the gas in a cylinder is the right one for the system it is being hooked up to, so design details of CGAs will vary, depending on the type of gas in the cylinder.
 - Some CGAs are larger than others.
 - Some have washers, some have notches.
 - They can have right- or left-hand threads.
 - Each design "matches" a specific gas to its appropriate delivery system.
- When a CGA doesn't fit easily onto a cylinder's valve, there's a probably a reason for it.
 - That's why you should never attempt to connect them by force.
 - That "stubborn" CGA is actually preventing something bad from happening.
- And you should never try to attach a regulator directly to a cylinder's valve without a CGA.
- There's another safety fitting on most valves you should know about, and it's actually designed to purposely leak under certain circumstances.
 - It's called a "pressure relief device", or PRD.
- If the pressure in a cylinder gets dangerously high, the PRD opens and vents off some of the gas, reducing the pressure and preventing a potential "explosion".
 - For instance, if a fire breaks out in a facility the cylinders there can heat up.
 - When the pressure inside them builds, the PRDs will open and allow the gases to bleed off safely.
 - This means that firefighters can enter the facility to battle the blaze without fear of encountering exploding cylinders.
 - If the gas inside the cylinders is flammable, the release will "only add fuel to the fire", but that's still preferable to having the cylinder explode.

- On the other hand, you won't find PRDs on cylinders that contain toxic or poisonous substances.
 - Any escape of these gases is considered too dangerous to risk, even more dangerous than the possibility of the cylinder exploding.
- Many of the safe practices that are used with compressed gas cylinders focus on preventing "leaks".
 - This is why you should always remove rusty, corroded and damaged cylinders from service immediately, before they develop a leak.
- If you ever detect a gas leak while you're handling a cylinder, alert your supervisor right away and remove the cylinder from service if you're authorized to do so.
- You should always test for leaks in the connections after you've installed a new cylinder into a gas delivery system.
 - You can do this by wetting down the surfaces with a diluted soap solution.
 - If bubbles appear, you know that there's a leak somewhere.
- To pinpoint the source of the leak, wipe off the general area, then reapply the soap solution to a smaller section of the connection.
 - If bubbles don't appear, wipe the solution off and try another section.
 - Keep going until you find the leak.
 - Remember to wipe off the old solution before each new test.
- Leaking valves can often be repaired just by tightening them.
 - Make sure you have the correctly-sized wrench or other "tightening tool" handy.
- If you can't fix a leak, alert other employees in the vicinity.
 - They may need to evacuate the area.
 - Then notify your supervisor.

- If you're qualified and have been asked to repair a leaking cylinder that hasn't responded to tightening, be extremely careful.
 - First, obtain the SDS for the gas that's in the cylinder, and determine its characteristics and potential hazards.
 - If necessary, have back-up personnel in place to help you.
 - Wear a self-contained breathing apparatus (SCBA) to do the work.
 - If the problem persists, take further action according to your facility's Emergency Action Plan.

* * * SUMMARY * * *

- There's no question that compressed gas cylinders make working with gases easier... but this advantage comes at a price, and we need to take care to use the cylinders safely.
- Be sure you're aware of the potential hazards of the gas cylinders that you work with.
- Know the properties and hazards of the gases inside, and the precautions that are required to work with them.
- Always use proper procedures when you're storing and transporting compressed gas cylinders.
- Understand the purpose of regulators and CGA's, and how to hook them up correctly.
- Know how to check cylinders and valves for leaks, and be prepared to deal with a leak if you find one.
- Accidents involving compressed gases don't "have" to happen.
- Treat the cylinders and the gases inside with the care and respect they deserve, and you'll help keep yourself, your coworkers and your facility safe and accident-free!